PARAGRAPH 1

Thermal decomposition of gaseous X_2 to gaseous X at 298 K takes place according to the following equation:

$$X_2(g) \Longrightarrow 2X(g)$$

The standard reaction Gibbs energy, $\Delta_r G^0$, of this reaction is positive. At the start of the reaction, there is one mole of X_2 and no X. As the reaction proceeds, the number of moles of X formed is given by β . Thus, $\beta_{equilibrium}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally. (Given: $R = 0.083 \text{ L bar K}^{-1} \text{ mol}^{-1}$)

The equilibrium constant K_p for this reaction at 298 K, in terms of $\beta_{equilibrium}$, is

(A)
$$\frac{8\beta_{\text{equilibrium}}^2}{2 - \beta_{\text{equilibrium}}}$$

(B)
$$\frac{8\beta_{\text{equilibrium}}^2}{4 - \beta^2}$$

(C)
$$\frac{4\beta_{\text{equilibrium}}^2}{2 - \beta_{\text{equilibrium}}}$$

(B)
$$\frac{8\beta_{\text{equilibrium}}^{2}}{4 - \beta_{\text{equilibrium}}^{2}}$$
(D)
$$\frac{4\beta_{\text{equilibrium}}^{2}}{4 - \beta_{\text{equilibrium}}^{2}}$$

Sol.

$$X_2(g) \Longrightarrow 2X(g)$$

$$\beta_{\text{e}}$$

Total number of moles at equilibrium.

$$\Rightarrow 1 - \frac{\beta_e}{2} + \beta_e$$

$$\Rightarrow 1 + \frac{\beta}{2}$$

$$K_p = \frac{\left(p_x\right)^2}{p_{x_2}}$$

$$= \frac{\left(\frac{\beta_{e} \times 2}{1 + \frac{\beta_{e}}{2}}\right)}{\left(1 - \frac{\beta_{e}}{2}\right) \times 2}$$

$$=\frac{2\beta_e^2}{\beta^2}$$

$$K_{p} = \frac{8\beta_{e}^{2}}{4 - \beta_{e}^{2}}$$

*34. The INCORRECT statement among the following, for this reaction is

- (A) Decrease in the total pressure will result in formation of more moles of gaseous X
- (B) At the start of the reaction, dissociation of gaseous X2 takes place spontaneously
- (C) $\beta_{equilibrium} = 0.7$
- (D) $K_c < 1$

Sol. **(C)**

There is no data given to find the $\beta_{equilibrium}$ exact value.

$$\Delta G_c^0 = -2.303 RT \log K_c$$

$$\log K_c = -1$$

$$K_c \le 1$$